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Machine Translation
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Chatbots
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Amazon Echo
Android
Cisco Spark
Discord
Email
iMessage
iOS

Kik
Messenger
Skype
Slack

SMS
Telegram
Twitter
Viber

Web
WeChat

CATEGORIES

Build A Bot
Analytics
Communication
Customer Support
Design

BOTS

Logan Paul @

Official Logan Paul chatbot

° Entertainment

CryptoHawk

All Your cryptocurrency education and news in one bot

° Finance
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Find the best cards fast. "Get your card on."
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Image Understanding "
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Image Understanding |
Dens&Cap by Justin Johnson & group

https://github.com/jcjohnson/densecap
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https://github.com/jcjohnson/densecap

Robotics
One-shot imitation learning - Duan et. al. at OpenAl
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Question Answerin

Inferring and Executing Programs for Visual Reasoning
- Johnson et. al. at Facebook

Question: Are there more cubes than yellow things? Answer: Yes
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Adversarial Networks
DCGAN by Radford et. al.
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Adversarial Nets pix2pix by Isola, Zhu, Zhou, Efros
@ UCBerkeley
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Adversarial Nets

Cycle GAN by Zhu, Park, Isola, Efros
@ UCBerkeley
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@ UNIVERSE

Measurement and training for
artificial intelligence.

cars

Video games

Internet
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The static kind

Train Model

Data

Examples




The static kind

Model
Train Model
Data
Deploy & Use ew @) Prediction
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The static kind

Static datasets + Static model structure
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The static kind

Static datasets + Static model structure
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The static kind
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The dynamic kind

LIve
data

@) Prediction

Continued Online Learning

Examples ' — Tools for Al




The dynamic kind
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The dynamic kind
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The dynamic kind
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Change in model-capacity at runtime

Examples ' — Tools for Al




The dynamic kind

Sample

o] o]

2 2

o o

=X =X

P4 P4

S S

3 3

o ([ ]

[oe] [oe]

(¢} (¢}

> >

P4 P4

) . ) .
3

oe) oe)

8 8

o o

=5 =5

= =

Change in model-capacity at runtlme

Examples ' — Tools for Al




The dynamic kind
Self-driving Cars
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The dynamigc kin

gqnd Executing Programs for Visual Reasoning
- Johnson et. al. at Facebook

Question: Are there more cubes than yellow things? Answer: Yes
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The dynamic kind
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The dynamic kind

self-adding new memory or layers
changing evaluation path based on inputs
online learning
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A next-gen framework for Al

-Interop with many dynamic environments

- Connecting to car sensors should be as easy as training on a dataset
- Connect to environments such as OpenAl Universe
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A next-gen framework for Al

-Interop with many dynamic environments

- Connecting to car sensors should be as easy as training on a dataset
- Connect to environments such as OpenAl Universe

-Dynamic Neural Networks
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- more complex Al systems means harder to debug without a simple AP
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A next-gen framework for Al

-Interop with many dynamic environments
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- Connect to environments such as OpenAl Universe

-Dynamic Neural Networks

- Change behavior and structure of neural network at runtime
-Minimal Abstractions

- more complex Al systems means harder to debug without a simple API
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A next-gen framework for Al

-Interop with many dynamic environments

- Connecting to car sensors should be as easy as training on a dataset
- Connect to environments such as OpenAl Universe

-Dynamic Neural Networks

- Change behavior and structure of neural network at runtime
-Minimal Abstractions

- more complex Al systems means harder to debug without a simple AP

-FAST
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Tools for Al research and deployment

Many machine learning tools and deep learning frameworks

PYTHORCH
f
TensorFlow
B® Microsoft

CNTK
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Tools for Al research and deployment

Dynamic graph frameworks
(more naturally enable
dynamic deep learning)

theano o PYTBRCH

Static graph frameworks

Caffe

¥ Microsoft

CNTK
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Static graph Frameworks

-Model is constructed and compiled once and reused many times
-Hard to change the model on the fly
-harder to debug in a complex system
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Dynamic graph Frameworks

-Model is constructed on the fly at runtime
-Change behavior, structure of model

-Imperative style of programming PYT b RCH

I

Chainer
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PyTorch
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Ndarray library gradient based

automatic differentiation

engine with GPU support optimization package

Deep Learning
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Numpy-alternative
Reinforcement Learning




# -*- coding: utf-8 -*- import torch
import numpy as np

dtype = torch.FloatTensor

# N 1s batch size; D _in is input dimension,
# dtype = torch.cuda.FloatTensor # Uncomment this to run on GPU

# H is hidden dimension;, D out 1s output dimension.

N, D_in, H, D_out = 64, 1000, 100, 10 , , L , ,
- - # N 1s batch size; D _i1n 1s 1nput dimension;

# H is hidden dimension, D out i1s output dimension.

# Create random input and output data N, D _in, H, D_out = 64, 1000, 100, 10

X = np.random.randn(N, D_in)

y = np.random.randn(N, D_out) # Create random input and output data
x = torch.randn(N, D_in).type(dtype)

# Randomly initialize weights y = torch.randn(N, D out).type(dtype) OrC
wl = np.random.randn(D_in, H) N m Py | h
w2 = np.random.randn(H, D out) u py # Randomly initialize weights

wl = torch.randn(D_in, H).type(dtype)

learning rate = le-6 w2 = torch.randn(H, D out).type(dtype)

for t in range(500):

. learning rate = le-6
# Forward pass: compute predicted y for t11§—range(500)'

h = x.dot(wl) | # Forward pass: compute predicted y
h relu = np.maximum(h, ©) h = x.mm(wl)

y_pred = h_relu.dot(w2) h_relu = h.clamp(min=0)
y pred = h_relu.mm(w2)
# Compute and print loss

loss = np.square(y_pred - y).sum() # Compute and print loss

print(t, loss) loss = (y_pred - y).pow(2).sum()
print(t, loss)

# Backprop to compute gradients of wl and w2 with respect to loss

grad y pred = 2.0 * (y pred - y)

grad w2 = h_relu.T.dot(grad_y pred)

grad h relu = grad y pred.dot(w2.T)

grad h = grad h relu.copy()

# Backprop to compute gradients of wl and w2 with respect to loss
grad y pred = 2.0 * (y_pred - y)

grad w2 = h_relu.t().mm(grad_y pred)

grad h relu = grad y pred.mm(w2.t())

grad_h = grad_h_relu.clone()

grad_h[h < 6] = © grad_h[h < 0] = ©

grad_W]. = X.T.dOt(grad_h) grad_wl = x't().mm(grad_h)

# Update weights # Update weights using gradient descent
wl -= learning_rate * grad wl wl -= learning_rate * grad wl

w2 -= learning rate * grad w2 w2 -= learning_rate * grad_w2



PyTorch Autograd

from torch.autograd import Variable



PyTorch Autograd

from torch.autograd import Variable

x = Variable(torch.randn(l, 10))
prev h = Variable(torch.randn(1l, 20))

W h = Variable(torch.randn (20, 20))
W x = Variable(torch.randn (20, 10))




PyTorch Autograd

from torch.autograd import Variable

x = Variable(torch.randn(l, 10))
prev h = Variable(torch.randn(1l, 20))
W h = Variable(torch.randn (20, 20))

W x = Variable(torch.randn (20, 10))

i2h
h2h

torch.mm(W x, x.t())
torch.mm(W h, prev h.t())




PyTorch Autograd

from torch.autograd import Variable
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i2h = torch.mm(W x, x.t())
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next h = i2h + h2h




PyTorch Autograd

from torch.autograd import Variable
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PyTorch Autograd

from torch.autograd import Variable

x = Variable(torch.randn(l, 10))
prev h = Variable(torch.randn(1l, 20))
W h = Variable(torch.randn (20, 20))

W x = Variable(torch.randn (20, 10))

i2h = torch.mm(W x, x.t())

h2h = torch.mm(W h, prev h.t())
next h = i2h + h2h

next h = next h.tanh()
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PyTorch Autograd

from torch.autograd import Variable

x = Variable(torch.randn(l, 10))
prev h = Variable(torch.randn(1l, 20))
W h = Variable(torch.randn (20, 20))

W x = Variable(torch.randn (20, 10))

i2h = torch.mm(W x, x.t())

h2h = torch.mm(W h, prev h.t())
next h = i2h + h2h

next h = next h.tanh()

next h.backward(torch.ones (1, 20))




PyTorch

- Naturally enables dynamic deep learning

. easy to interface with a wide range of interactive environments
- because of an imperative style of programming
- because of deep Python integration

- as fast as anything else out there on average
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