

Mapping the Brain: Machine Learning to the Rescue

P. Fua IC-CVLab EPFL

Computers and Brains

The Promise

Understanding how neurons are connected would help us:

- Build models that we can test, manipulate, and use to simulate different functions;
- Understand how the removal of synapses or demyelinating diseases affect function;
- Develop and test new drugs to reverse the effect of neuro-degenerative diseases.

—> Major scientific advances.

Multi-Scale Imagery

Fluorescent neurons in vivo in the adult mouse brain.

Imaged through a cranial window using a 2-photon microscope.

FIB stack and reconstructed neural structures.

Really Big Data!

- A human brain contains approximately 100 billion neurons and 100 trillion synapses.
- It would take 1000 Exabytes to store an uncompressed digitization at 5nm resolution.

Machine learning to the rescue!

- 1. Delineate Dendritic Trees in LM Micrographs
- 2. Find Synapses and Mitochondria in FIBSEM Micrographs
- —> Sophisticated Multi-Scale Brain Models.

Neural Structures in Light Microscopy

Brainbow Stack

Ground Truth

QMIP reconstruction

Retina Blood Vessels

Roads in Aerial Images

Machine Learning

- Enables the **same** algorithm to operate in **many** different context. We simply have to train them using different kind of data.
- Can leverage knowledge about one domain to handle a different one. In other words, you can train on roads and race on dendrites.

Synapses and Mitochondria

- Synapses transmit signals from neurons to other cells.
- Mitochondria provide cells with the energy they need.
- Neuro-degenerative diseases affect their shapes.

Electron Microscopy

FIBSEM stack at 5 nm resolution.

Mitochondria

Synapses

3D Mitochondria

 $3.21~\mu m \times 3.21~\mu m \times 1.08~\mu m$: 53 mitochondria

Synapses in Young and Old Mice

Mouse 1

Perforated

Non perforated

0.00

0.00

0.00

0.01

0.02

0.03

0.4

0.5

0.6

Synapse area [\mum^2]

PSD diameter

PSD area in a young mouse

PSD area in an old mouse

—> Fewer but apparently stronger synaptic connections in old mice than in young ones.

Bringing it Together

Conclusion

- A human brain contains approximately 100 billion neurons and 100 trillion synapses.
- It would take 1000 Exabytes to store an uncompressed digitization at 5nm resolution.

- Techniques that rely on Machine Learning can already deliver useful results but not yet on a truly large scale.
- Scaling them up is going to be our challenge for the coming years.