
Large scale machine learning
for text understanding (and computer vision)

Armand Joulin

Facebook AI Research
ajoulin@fb.com



Introduction

• Text classification is core to many problems (information retrieval or
web search).

• Depending on the application, it requires:

• Pre-trained word representations (word2vec),

• Scaling to massive amount of data,

• Small memory footprint for embedded system

• We have developed a library designed to solve these problems, called
fastText:

https://github.com/facebookresearch/fastText



Learning word representations

• Goal: learn a continuous representation of words using massive
amount of data

• Idea: learn representation to predict well its context (Harris, 1954;
Firth, 1957).

• How: by framing it as binary classification problem as in
word2vec (Mikolov et al., 2013).



Learning word representations

• A score between words and their context s(w , c) is maximized

• Word2vec skipgram uses a dot product, s(w , c) = w>c

• However this ignores the structure of words.



Learning word representations

• Instead, represent a word as bag of character n-grams:

skiing = { ski, skii, kiin, iing, ing}

• Similarity becomes the dot product between context and this
representation:

s(w , c) =
∑
g∈Gw

z>g c .

Enriching Word Vectors with Subword Information.
P. Bojanowski, E. Grave, A. Joulin, T. Mikolov.
https://arxiv.org/abs/1607.04606



Technical details

• n-grams between 3 and 6 characters.

• Hashing trick (Weinberger et al., 2009).

• Stochastic gradient descent with linear decay and Hogwild (Recht
et al., 2011)

• Only ×2 slower than word2vec.



Experiments – word similarity

skipgram cbow fastText

Ar WS353 51 52 55

De
Gur350 61 62 70
Gur65 78 78 81
ZG222 35 38 44

En
RW 43 43 47

WS353 72 73 71

Es WS353 57 58 59

Fr RG65 70 69 75

Ro WS353 48 52 54

Ru HJ 59 60 66

Table: Correlation between human judgement and similarity scores. Models
trained on normalized wikipedia dumps.



Experiments – word similarity

De En Es Fr

Gur350 ZG222 WS RW WS RG

Luong et al. (2013) - - 64 34 - -
Qiu et al. (2014) - - 65 33 - -

Soricut and Och (2015) 64 22 71 42 47 67
fastText 73 43 73 48 54 69

Botha and Blunsom (2014) 56 25 39 30 28 45
fastText 66 34 54 41 49 52

Table: Spearman’s rank correlation between human judgement and model scores.



Large scale text classification

• A document is represented as a bag of words/n-grams.

• Given labeled data (xn, yn), minimize the softmax loss:

N∑
n=1

`(yn, VUxn).

Equivalent to linear model with rank constraint.

Bag of Tricks for Efficient Text Classification.
A. Joulin, E. Grave, P. Bojanowski, T. Mikolov.
https://arxiv.org/abs/1607.01759



Large scale text classification

We use a set of standard tricks to speed-up training:

• Feature hashing for n-grams (Agarwal et al., 2014);

• Hierarchical softmax for large output spaces (Goodman, 2001);

• Pre-trained word vectors.

• SGD + Hogwild



Experiments – Small output space

Zhang et al. (2015) Conneau et al. (2016) fastText

AG 87.2 3h 91.3 51m 92.5 1s
Amz. F. 59.5 5d 63.0 7h 60.2 9s
DBpedia 98.3 5h 98.7 1h 98.5 2s
Yah. A. 71.2 1d 73.4 2h 72.3 5s
Yelp F. 62.0 - 64.7 1h12 63.9 4s

Table: Test accuracy [%] and training time per epoch.



Experiments – Large output space

Model prec@1
Running time

Train Test

Freq. baseline 2.2 - -
Tagspace (Weston et al., 2011) 35.6 5h32 15h

fastText 46.1 13m38 1m37

Table: Tag prediction on YFCC100M. The output space contains +300K labels.



Compressing text classifiers

• Linear models are state-of-the-art and extremely efficient

• However they require a lot of memory

• fastText models are often + 100Mb.

• Cannot fit on embedded device!

FastText.zip: Compressing text classification models.
A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jegou, T. Mikolov.
http://openreview.net/forum?id=SJc1hL5ee



Compressing text classifiers

2 key ideas:

• Apply quantization approaches designed for retrieval

• Prune dictionary based on the norm of the embeddings

Leads to compression of ×100− 1000 with (almost) no drop of
performance or speed.

FastText.zip: Compressing text classification models.
A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jegou, T. Mikolov.
http://openreview.net/forum?id=SJc1hL5ee



Compressing text classifiers

• We use Product Quantizer (PQ) (Jegou et al., 2011)

• Product quantization approximates a vector x by

x̂ = [q1(x1), ..., qk(xk)],

where xi are subvectors and qi are k-means quantizers.

• k = d/2 and 28 centroids per k-means: compression of ×8.

• Simple to implement and easily parallelizable.



Compressing text classifiers

A few additional tricks:

• Compress norm and vectors seperately

• Bottom-up compression: first the embedding, then the classifiers.

• Retraining the classifier often helps but is costly.



Compressing text classifiers

2 4 8
94.0

94.5

95.0

95.5

96.0

96.5

ac
cu

ra
cy

Sogou

2 4 8
number of bytes

69.5
70.0
70.5
71.0
71.5
72.0
72.5

Yahoo

Full PQ OPQ LSH, norm PQ, norm OPQ, norm

2 4 8
62.0

62.4

62.8

63.2

63.6

Yelp full

Figure: Comparison of different compression algorithm.



Compressing text classifiers

• Second strategy: feature selection.

• Cast it as finding the closest sparse model under coverage
constraints

• Approximate solution by selecting K largest embeddings that covers
the dataset.



Compressing text classifiers

-2
-1
0

AG Amazon full

-2
-1
0

Amazon polarity DBPedia

-2
-1
0

Sogou Yahoo

100kB 1MB 10MB 100MB
-2
-1
0

Yelp full

100kB 1MB 10MB 100MB

Yelp polarity

Full PQ Pruned Zhang et al. (2015) Xiao & Cho (2016)

Figure: Loss of accuracy vs model size.



Extreme compression

Dataset full 64KiB 32KiB 16 KiB

AG 65M 92.1 91.4 90.6 89.1
Amazon full 108M 60.0 58.8 56.0 52.9
Amazon pol. 113M 94.5 93.3 92.1 89.3
DBPedia 87M 98.4 98.2 98.1 97.4
Sogou 73M 96.4 96.4 96.3 95.5
Yahoo 122M 72.1 70.0 69.0 69.2
Yelp full 78M 63.8 63.2 62.4 58.7
Yelp pol. 77M 95.7 95.3 94.9 93.2

Average diff. [%] 0 -0.8 -1.7 -3.5

Table: Performance of very small models.



Summary

• Simple linear models are fast and get good accuracy.

• With standard compression techniques, they hve small memory
footprint with almost no drop in accuracy or speed.

• Code available online:

https://github.com/facebookresearch/fastText



Future work

• Use better parallelization approaches for a greater speed-up (Smith
et al., 2016),

• Compress while training with sparsity inducing norms (Meier et al.,
2008; Bach et al., 2012),

• Revisit efficent features to extend it to images (Bay et al., 2008;
Calonder et al., 2010)



Why efficient visual features are important

the veranda hotel

portixol palma

plane approaching zrh

avro regional jet rj

article in the local 

paper about all the 

unusual things found

at otto s home

student housing by 

lungaard tranberg 

architects in copenhagen 

click here to see where 

this photo was taken

this was another one with my old digital
camera i like the way it looks for some things 
though slow and lower resolution than new 
cameras another problem is that it s a bit of
a brick to carry and is a pain unless you re

carrying a bag with some room it s nearly x x
and weighs ounces new one is x x and weighs

ounces i underexposed this one a bit did
 exposure bracketing script underexposure on

that camera looks melty yummy 
gold kodak film like

not as impressive as

embankment that s for sure

Figure: Six randomly picked photos and captions from Flickr.



Why efficient visual features are important

• Current approaches too slow to train on “webly” datasets (several
weeks on 100M images with 4 high-end GPUs).

• But there are evidence that more data is better than annotated data.

Flickr Word Prediction

size of YFCC100M training set (in millions) →

pr
ec

isi
on

@1
0 
→

Pascal VOC

m
AP

 →

Figure: Alexnet trained on Imagenet vers trained on Flickr100M.

Learning Visual Features from Large Weakly Supervised Data.
A. Joulin, L. van der Maaten, A. Jabri, and N. Vasilache.
European Conference on Computer Vision, 2016.



Why efficient visual features are important

• Training simpler models on more data works often better than
complex model on less data.

COCO-5K Flickr-30K
R@1 R@5 R@10 R@1 R@5 R@10

STD-RNN (Socher et al., 2014) – – – 9.6 29.8 41.1
BRNN (Karpathy and Fei-Fei, 2015) 16.5 39.2 52.0 22.2 48.2 61.4
Kiros et al. (Kiros et al., 2014) – – – 23.0 50.7 62.9
NIC (Vinyals et al., 2015) – – – 23.0 – 63.0

Jelinek-Mercer + finetuning 17.8 41.9 53.9 28.6 54.7 66.0

Table: Comparison of language models for caption retrieval on the COCO-5K
and Flickr-30K datasets.

Learning Visual N-Grams from Web Data.
A. Li, A. Jabri, A. Joulin and L. van der Maaten.
submitted, 2016.



Thank you!



Experiments – effect of n-gram size

Semantic

2 3 4 5 6

2 59 55 56 59 60
3 60 58 60 62
4 62 62 63
5 64 64
6 65

Syntactic

2 3 4 5 6

2 45 50 53 54 55
3 51 55 55 56
4 54 56 56
5 56 56
6 54

Table: Study of the effect of n-gram size on performance (language: German).



Experiments

Model AG DBP Yelp F. Yah. A. Amz. F.

BoW (Zhang et al., 2015) 88.8 96.6 58.0 68.9 54.6
ngrams (Zhang et al., 2015) 92.0 98.6 56.3 68.5 54.3
ngrams TFIDF (Zhang et al., 2015) 92.4 98.7 54.8 68.5 52.4

fastText 92.5 98.6 63.9 72.3 60.2

Table: Test accuracy [%] on datasets with small output space.



References I

Agarwal, A., Chapelle, O., Dud́ık, M., and Langford, J. (2014). A reliable
effective terascale linear learning system. Journal of Machine Learning
Research, 15(1):1111–1133.

Bach, F., Jenatton, R., Mairal, J., and Obozinski, G. (2012).
Optimization with sparsity-inducing penalties. Foundations and
Trends R© in Machine Learning, 4(1):1–106.

Bay, H., Ess, A., Tuytelaars, T., and Van Gool, L. (2008). Speeded-up
robust features (SURF). CVIU, 110(3):346–359.

Botha, J. A. and Blunsom, P. (2014). Compositional morphology for
word representations and language modelling. In Proc. ICML.

Calonder, M., Lepetit, V., Strecha, C., and Fua, P. (2010). Brief: Binary
robust independent elementary features. In ECCV.

Conneau, A., Schwenk, H., Barrault, L., and Lecun, Y. (2016). Very
deep convolutional networks for natural language processing. arXiv
preprint arXiv:1606.01781.



References II

Firth, J. R. (1957). Papers in linguistics, 1934-1951. Oxford University
Press.

Goodman, J. (2001). Classes for fast maximum entropy training. In
ICASSP.

Harris, Z. S. (1954). Distributional structure. Word, 10(2-3).

Jegou, H., Douze, M., and Schmid, C. (2011). Product quantization for
nearest neighbor search. IEEE Trans. PAMI.

Karpathy, A. and Fei-Fei, L. (2015). Deep visual-semantic alignments for
generating image descriptions. In CVPR.

Kiros, J. R., Salakhutdinov, R., and Zemel, R. S. (2014). Unifying
visual-semantic embeddings with multimodal neural language models.
CoRR, abs/1411.2539.

Luong, T., Socher, R., and Manning, C. D. (2013). Better word
representations with recursive neural networks for morphology. In Proc.
CoNLL.



References III

Meier, L., Van De Geer, S., and Bühlmann, P. (2008). The group lasso
for logistic regression. Journal of the Royal Statistical Society: Series
B (Statistical Methodology), 70(1):53–71.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J.
(2013). Distributed representations of words and phrases and their
compositionality. In Adv. NIPS.

Qiu, S., Cui, Q., Bian, J., Gao, B., and Liu, T.-Y. (2014). Co-learning of
word representations and morpheme representations. In Proc. COLING.

Recht, B., Re, C., Wright, S., and Niu, F. (2011). Hogwild: A lock-free
approach to parallelizing stochastic gradient descent. In Adv. NIPS.

Smith, V., Forte, S., Ma, C., Takac, M., Jordan, M. I., and Jaggi, M.
(2016). Cocoa: A general framework for communication-efficient
distributed optimization. arXiv preprint arXiv:1611.02189.

Socher, R., Karpathy, A., Le, Q., Manning, C. D., and Ng, A. (2014).
Grounded compositional semantics for finding and describing images
with sentences. TACL.



References IV

Soricut, R. and Och, F. (2015). Unsupervised morphology induction
using word embeddings. In Proc. NAACL.

Vinyals, O., Toshev, A., Bengio, S., and Erhan, D. (2015). Show and
tell: A neural image caption generator. In CVPR.

Weinberger, K., Dasgupta, A., Langford, J., Smola, A., and Attenberg, J.
(2009). Feature hashing for large scale multitask learning. In ICML.

Weston, J., Bengio, S., and Usunier, N. (2011). Wsabie: Scaling up to
large vocabulary image annotation. In Proceedings of the International
Joint Conference on Artificial Intelligence.

Zhang, X., Zhao, J., and LeCun, Y. (2015). Character-level convolutional
networks for text classification. In Adv. NIPS.


