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Key tool:
Compression
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Caveats for generalization:
Collected the full data &
Performed a full transformation!



The core challenge: . ’{
pied &

1 . Plper
Can we automatically teach any sensor
how to compress its own data well?”

Our twist:
Compress without transtorming or sampling the whole data!






(Old) Compressive sensing (CS)

e (Goal; Directly obtain the compressed version
e Off-load the difficulty to computation
- encoding model: b= PoFa! & 2% is s sparse in W

- decoding algorithm: convex optimization

T =argmin{ ||V x|, : b= PoFzx}

- Theorem: If || > s (logp)’ & Q is sufficiently random

then & = z with hp

[Candes et al 2006;...]



Challenges to the old CS

» High computational cost & latency: O(n?p*®)

 QOversampling: p vs s vs s(logp)”

* Dictionary W: hidden need for training data




“When solving a given pro

olem, try to avoid a

more general problem as an intermediate step.”

—Vladimir Vapnik
[main developer of statistical learning theory (along with Alexey Chervonenkis)]

Given training data, we will bypass dictionary learning &
design the whole compressive sampling system directly




Statistical Learning Theory
meets Compressive Sensing

Non-
urgent

L

minutes

Learning data triage (simplified)



A statistical learning framework
for CS with sample signals

Probabilistic model: y = PoFx"

> 2% follows some unknown probability distribution P.

Sample signals:  {x;}i<m, i.i.d. random vectors following P
Fix an estimator: & = FH Py = (PoF)Ty
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Goal: Fix |Q2] = n. Find a sub-sampling pattern €2, given {z; }i<m,
such that the risk E £(z%; Q) is minimized.
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Empirical risk minimization-|

If P were known, the optimal €2 is given by solving the discrete
optimization problem:

Qopt € arg min E £(z%; Q)
Q:1Q2|<n

Proposition

We have L(z8; Q) = 1 — 1PaFellz .1 _ p(h. ).

18]35

Therefore, we can write

Qopt € arg max E £(2; Q),
Q:1Q2|<n

and we have

Po  Fabl2
Eﬁ(xh§ﬂopt): min E[:(.’L'h;ﬂ):l_EH Qopt 7|5

—: 1 — EP.
[0 EE



Empirical risk minimization-I|

While P is unknown, we have i.i.d. samples {x;};<, from P.

Hence we may consider the empirical risk minimizer given by:

A 1
(Q€argmax — »  L(x;;9Q).
Q:|Q|<n M Z’Lﬁm

Since in general Q) # ()opt, We can only expect that

EL(z% Q) <EL(ZY: Qopt) + 6 =1 —ep + .



Statistical analysis

Recall that E £(z%; Q) < E L(x%; Qopt) + 6 = 1 — p + £4m,.

Theorem
For any 5 € (0,1), we have

O]
m | n B/

with probability at least 1 — 3.

Corollary

Number of sample signals required is of O(nlogp).



Solving the discrete
optimization problem

Define ; = x;/||x;||2. Recall that

A PoF x|
() e= a,rgmaxz.< [P . 2’&“2 :argmaxz.< | PoFiil|3.
Q:loj<n Si<m||xg|3 Q:[Q|<n “i<m

Proposition (Existence of a simple greedy algorithm)

Let ¢; be the i-th row of F. We can compute Q) exactly by the following
greedy algorithm.

1. For alli < p, compute v; =3 .. [{¢s, T;)|*.
2. Let ) be the set of indices of the n largest v;'s.

» If F is the Fourier transform, then the computational complexity is
O(mplogp), nearly linear time.



Applications



lmages - |

Old CS vs Learning based CS vs JPEG



Images - ||

Opens up the possibility of

i i |
1Gpix at 1MPix rate: streaming video at 30FPS
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Wireless neural implants

u-electrode

input

> . ADC

DSP

> Dataset: billion samples length from iEEG.org

Old CS

SNR comparison in [dB], for N=256 and B; = 10

TX

Compression rate
Method 2 1 s 16 32 64
LBCS 40.79 37.64 33.27 28.48 23.27 18.06
SHS 36.92 27.96 23.89 20.26 18.53 14.49
BERN 37.48 26.69 20.49 16.87 13.53 11.15
MCS 28.96 24.40 20.92 17.48 n.a. n.a.

e SHS: Structured Hadamard Sampling [Baldassarre, ‘15]

« BERN: Random Bernoulli [Chen, JSSC "12]
 MCS: Multi-Channel Sampling [Shoaran, TBioCAS’15]
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Wireless neural implants - |

5KHz
u-electrode
ot T AFE f ADC DSP >>j

1nd/bit
~.3uW/accumulator

> 30dB quality Stream out Full comp.

AFE
+ ADC

DSP
1D, ¢ 50uW ~2.5uW ~3uW

other trade-offs are possible!



Wireless neural implants - ||

u-electrode
ot T AFE f ADC DSP >>j

Actual circuit:




Magnetic Resonance
Imaging

 MRI of the Brain ... 20-45 minute scan time.

* MRI of the Orbits ... 20-35 minute scan time.

 MRI of the TMJ ... 45-60 minute scan time.

* MRI of the Soft Tissue Neck ... 25-35 minute scan time.
« MRI of the Cervical Spine ... 20-35 minute scan time.
 MRI of the Upper Extremity ... 20-45 minute scan time.
 MRI of the Thoracic Spine ... 25-45 minute scan time.
 MRI of the Chest ... 25-45 minute scan time.

e MRI of the Abdomen ... 25-45 minute scan time.
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MRI - multi coll (4xaccel)

D l||||||||

EEIE
! -.m-

|

Decoder: BP with shearlets

i saas
=iz . =L
=I= ;; -]




MRI - multi coll (4xaccel)

odB improvement
on the average



MRI - multi coll (4xaccel)

LBCS Patient #22 VD

40.80dB 35.08dB



MRI - multi coll (4xaccel)

LBCS Patient #29 VD

41.39dB 34.80dB



|_earning-based CS

Middle-out compression unleashed
with machine learning

htto.//lions.epfl.ch/oublications
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