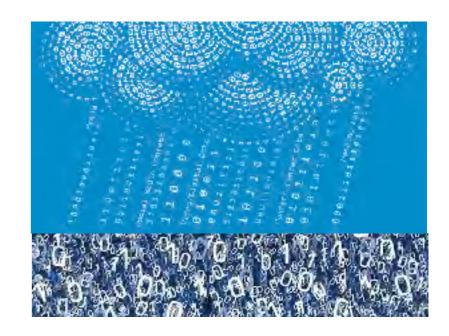
### Nature

# Learning-based compression



Value / Knowledge

#### Volkan Cevher

Laboratory for Information and Inference Systems <a href="http://lions.epfl.ch">http://lions.epfl.ch</a>



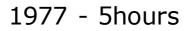


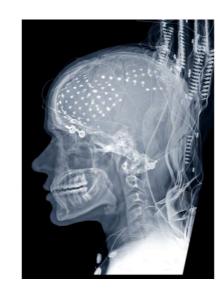


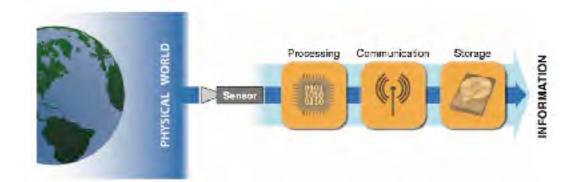
### A paradigm shift in data generation







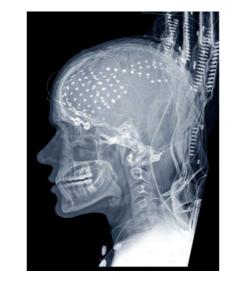


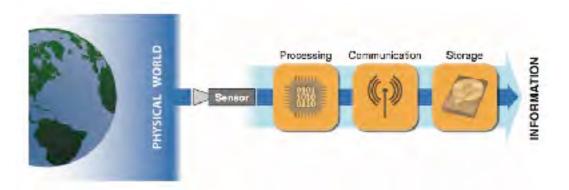


### A paradigm shift in data generation









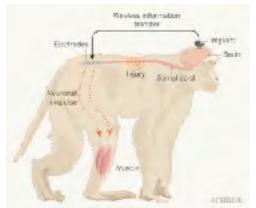
1977 - 5hours



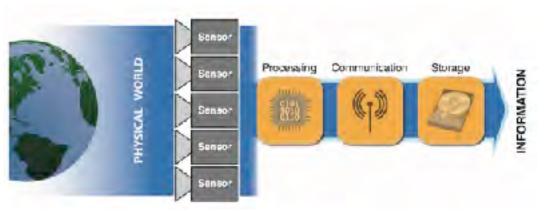




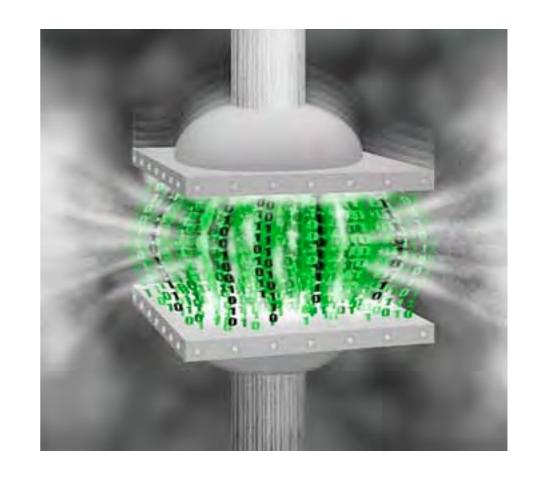








# Key tool: Compression







Power: OK



12MPix



#### Talk time (wireless):

Up to 21 hours on 3G

#### Standby:

Up to 16 days

#### Internet use:

Up to 13 hours on 3G

Up to 13 hours on LTE

Up to 15 hours an Wi-Fi

#### Wireless video playback:

Up to 14 hours

Wireless audio playback:

Up to 60 hours





Power: OK Storage: NO

Talk time (wireless):

Up to 21 hours on 3G

Standby:

Up to 16 days

Internet use:

Up to 13 hours on 3G

Up to 13 hours on LTE

Up to 15 hours on Wi-Fi

Wireless video playback:

Up to 14 hours

Wireless audio playback:

Up to 60 hours



12MPix & 24bits/pixel = 36MB



iPhone 7 Plus 32GB Price in Switzerland: - 837CHF iPhone 7 Plus 128GB Price in Switzerland: - 947CHF iPhone 7 Plus 256GB Price in Switzerland: - 1057CHF

 $\approx 1000 \text{ images}$ 

+ no apps





Power: OK Storage: OK

Talk time (wireless):

Up to 21 hours on 3G

Standby:

Up to 16 days

Internet use:

Up to 13 hours on 3G

Up to 13 hours on LTE

Up to 15 hours on Wi-Fi

Wireless video playback:

Up to 14 hours

Wireless audio playback:

Up to 60 hours



12MPix & 24bits/pixel = 36MB



Compression



iPhone 7 Plus 32GB Price in Switzerland :- 837CHF

iPhone 7 Plus 128GB Price in Switzerland: 947CHF

iPhone 7 Plus 256GB Price in Switzerland :- 1057CHF

 $\approx 25000 \text{ images}$ 

+ no apps

(vs 1000 images)

### actual: 1.4MB



**Bandwidth: OK** 



Power: OK Storage: OK

Talk time (wireless):

Up to 21 hours on 3G

Standby:

Up to 16 days

Internet use:

Up to 13 hours on 3G

Up to 13 hours on LTE

Up to 15 hours on Wi-Fi

Wireless video playback:

Up to 14 hours

Wireless audio playback:

Up to 60 hours

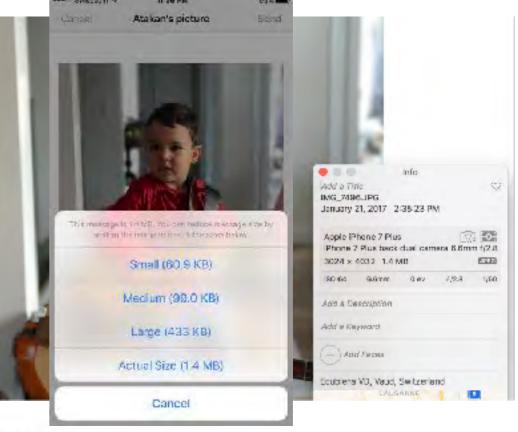


12MPix & 24bits/pixel = 36MB



Compression





iPhone 7 Plus 32GB Price in Switzerland :- 837CHF

iPhone 7 Plus 128GB Price in Switzerland: 947CHF

iPhone 7 Plus 256GB Price in Switzerland :- 1057CHF

 $\approx 25000 \text{ images}$ 

+ no apps

(vs 1000 images)

### actual: 1.4MB



### Compression helps!

**Bandwidth: OK** 



Power: OK Storage: OK

Talk time (wireless):

Up to 21 hours on 3G

Standby:

Up to 16 days

Internet use:

Up to 13 hours on 3G

Up to 13 hours on LTE

Up to 15 hours on Wi-Fi

Wireless video playback:

Up to 14 hours

Wireless audio playback:

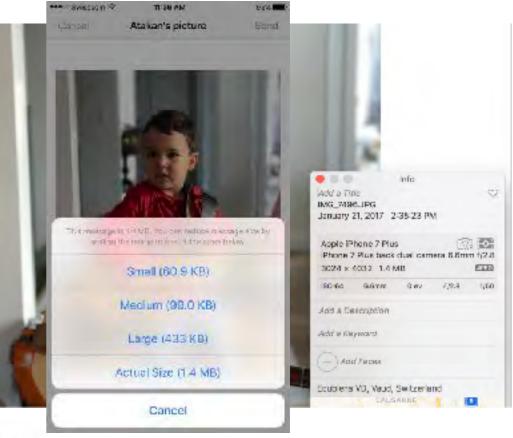
Up to 60 hours



12MPix & 24bits/pixel = 36MB



Compression



iPhone 7 Plus 32GB Price in Switzerland :- 837CHF

iPhone 7 Plus 128GB Price in Switzerland: 947CHF

iPhone 7 Plus 256GB Price in Switzerland :- 1057CHF

 $\approx 25000 \text{ images}$ 

+ no apps

(vs 1000 images)

### actual: 1.4MB



# Compression: The basics

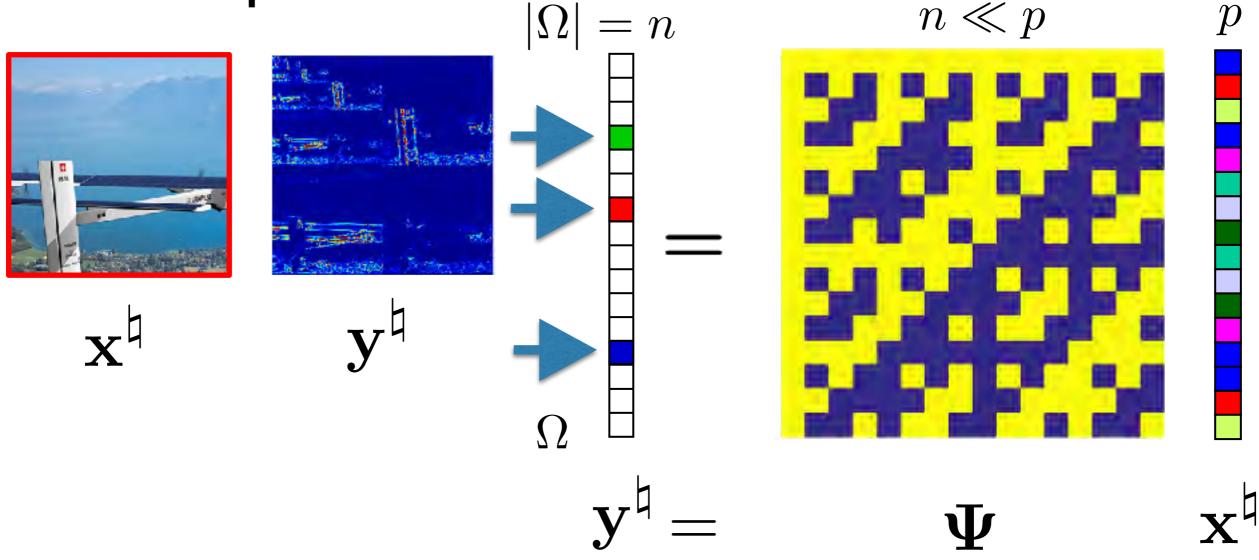


 $\mathbf{x}^
atural}$ 

 $\mathcal{D}$ 



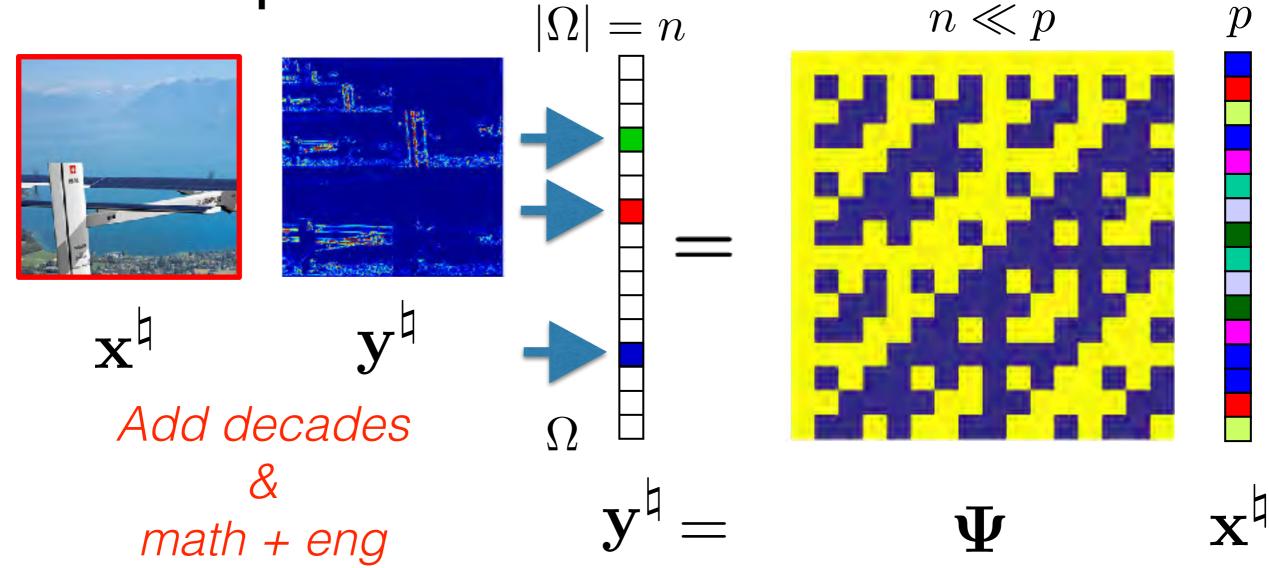
Compression: The basics  $|\Omega| = n$ 



JPEG2000: Wavelets

sparsity

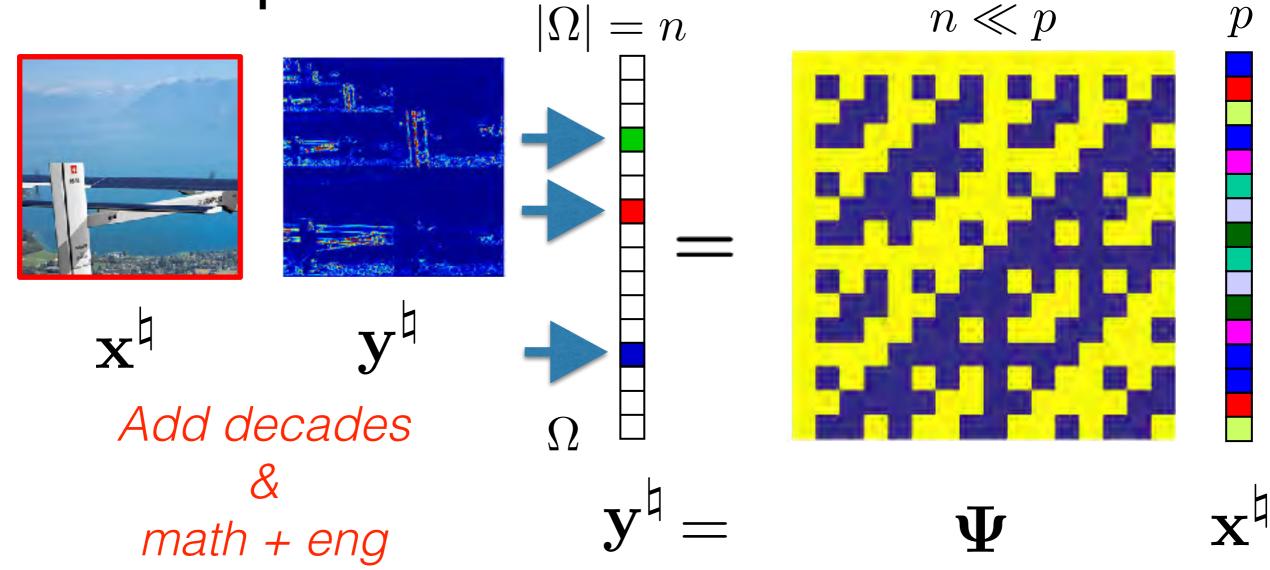
Compression: The basics  $\lim_{|\Omega|=n} |\Omega| = n$ 



JPEG2000: Wavelets

sparsity

# Compression: The basics $\lim_{n \to \infty} |n| = n$



JPEG2000: Wavelets

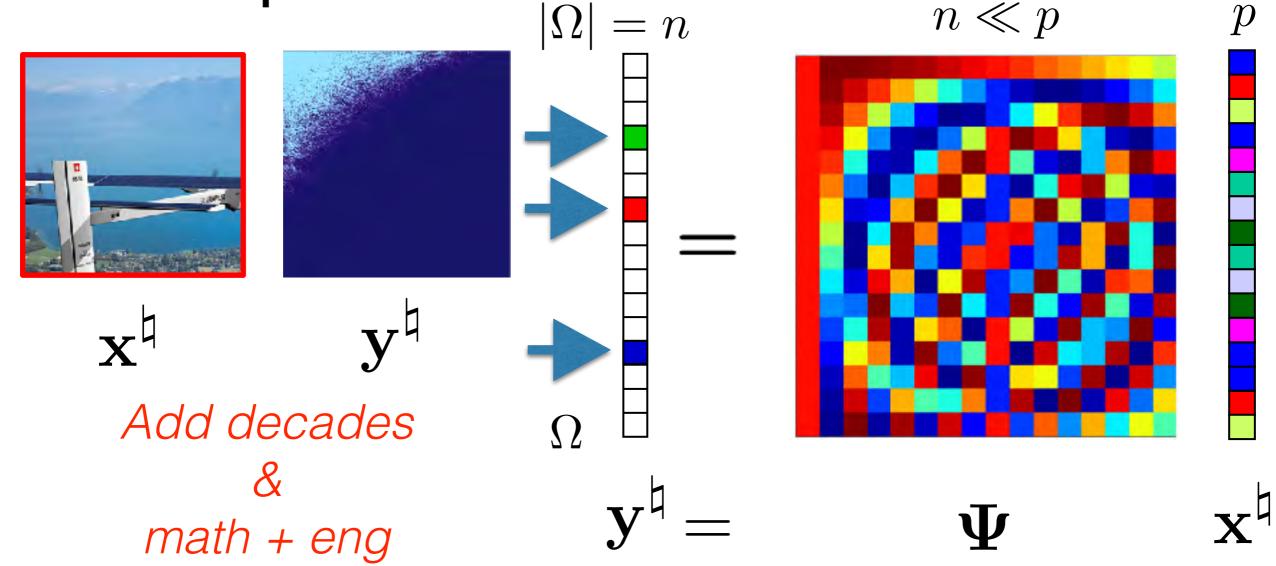
Strategy: Encode  $b = P_{\Omega} \Psi x^{\sharp}$ 

 $P_{\Omega}$ : Subset selector

Decode  $\hat{x} = \Psi^* P_{\Omega}^* b$ 

sparsity

# Compression: The basics $\lim_{n \to \infty} |n| = n$



Strategy: Encode  $b = P_{\Omega} \Psi x^{\sharp}$ 

JPEG: DCT  $P_{\Omega}$ : Subset selector

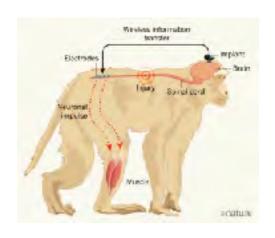
Decode  $\hat{x} = \Psi^* P_{\Omega}^* b$ 

JPEG: DCT **sparsity** 

#### The core challenge:

"Can we automatically teach any sensor how to compress its own data well?"













Compression helps!

**Bandwidth: OK** 



Power: OK **Storage: OK** 

Talk time (wireless):

Up to 21 hours on 3G

Standby:

Up to 16 days

Internet use:

Up to 13 hours on 3G

Up to 13 hours on LTE

Up to 15 hours on Wi-Fi

Wireless video playback:

Up to 14 hours

Wireless audio playback:

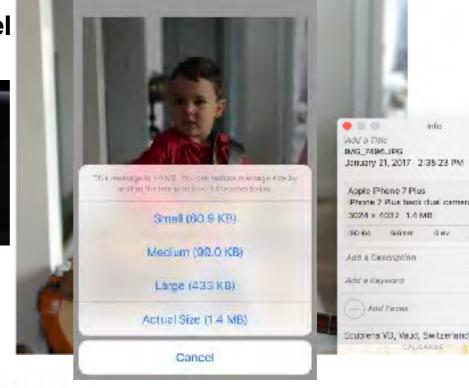
Up to 60 hours



12MPix & 24bits/pixel = 36MB



Compression



Atakan's picture

actual: 1.4MB

And Ferre

iPhone 7 Plus 32GB Price in Switzerland: - 837CHF

iPhone 7 Plus 128GB Price in Switzerland: 947CHF

iPhone 7 Plus 256GB Price in Switzerland: - 1057CHF

### Caveats for generalization:

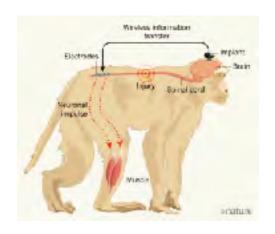
Collected the full data & Performed a full transformation!



#### The core challenge:

"Can we automatically teach any sensor how to compress its own data well?"













### Our twist:

Compress without transforming or sampling the whole data!



### (Old) Compressive sensing (CS)

- Goal: Directly obtain the compressed version
- Off-load the difficulty to computation
  - encoding model:  $b = P_{\Omega} \mathcal{F} x^{\natural} \& x^{\natural} \text{ is } s \text{ sparse in } \Psi$
  - decoding algorithm: convex optimization

$$\hat{x} = \arg\min_{x} \{ \|\Psi^* x\|_1 : b = P_{\Omega} \mathcal{F} x \}$$

- Theorem: If  $|\Omega| \ge s (\log p)^{\gamma} \& \Omega$  is sufficiently random then  $\hat{x} = x^{\natural}$  with hp

### Challenges to the old CS

High computational cost & latency:

$$\mathcal{O}(n^2p^{1.5})$$

Oversampling:

$$p \text{ vs } s \text{ vs } s(\log p)^{\gamma}$$

• Dictionary  $\Psi$ : <u>hidden</u> need for training data

"When solving a given problem, try to avoid a more general problem as an intermediate step."

-Vladimir Vapnik
[main developer of statistical learning theory (along with Alexey Chervonenkis)]

Given training data, we will bypass dictionary learning & design the whole compressive sampling system directly

# Statistical Learning Theory meets Compressive Sensing



Learning data triage (simplified)

# A statistical learning framework for CS with sample signals

- Probabilistic model:  $y = P_{\Omega} \mathcal{F} x^{\natural}$ 
  - $x^{\natural}$  follows some **unknown** probability distribution  $\mathbb{P}$ .
- Sample signals:  $\{x_i\}_{i < m}$ , i.i.d. random vectors following  $\mathbb{P}$
- Fix an estimator:  $\hat{x} = \mathcal{F}^H P_{\Omega}^T y = (P_{\Omega} \mathcal{F})^{\dagger} y$
- Loss function:  $\mathcal{L}(x^{\natural};\Omega) = \frac{\|\hat{x} x^{\natural}\|_2^2}{\|x^{\natural}\|_2^2}$
- Goal: Fix  $|\Omega| = n$ . Find a sub-sampling pattern  $\Omega$ , given  $\{x_i\}_{i \leq m}$ , such that the risk  $\mathsf{E} \mathcal{L}(x^{\natural};\Omega)$  is minimized.

# A statistical learning framework for CS with sample signals

- Probabilistic model:  $y = P_{\Omega} \mathcal{F} x^{\natural}$ 
  - $x^{\natural}$  follows some **unknown** probability distribution  $\mathbb{P}$ .
- Sample signals:  $\{x_i\}_{i < m}$ , i.i.d. random vectors following  $\mathbb{P}$
- Fix an estimator:  $\hat{x} = \mathcal{F}^H P_{\Omega}^T y = (P_{\Omega} \mathcal{F})^{\dagger} y$  simplification is here
- Loss function:  $\mathcal{L}(x^{\natural};\Omega) = \frac{\|\hat{x} x^{\natural}\|_2^2}{\|x^{\natural}\|_2^2}$
- Goal: Fix  $|\Omega| = n$ . Find a sub-sampling pattern  $\Omega$ , given  $\{x_i\}_{i \leq m}$ , such that the risk  $\mathsf{E}\,\mathcal{L}(x^{\natural};\Omega)$  is minimized. simplification is here

### Empirical risk minimization-I

If  $\mathbb{P}$  were known, the optimal  $\Omega$  is given by solving the discrete optimization problem:

$$\Omega_{\mathsf{opt}} \in \operatorname*{arg\,min}_{\Omega: |\Omega| \le n} \mathsf{E}\,\mathcal{L}(x^{\natural}; \Omega)$$

#### **Proposition**

We have 
$$\mathcal{L}(x^{\natural};\Omega) = 1 - \frac{\|P_{\Omega}\mathcal{F}x^{\natural}\|_{2}^{2}}{\|x^{\natural}\|_{2}^{2}} =: 1 - \ell(x^{\natural};\Omega).$$

Therefore, we can write

$$\Omega_{\mathsf{opt}} \in \underset{\Omega:|\Omega| < n}{\operatorname{arg\,max}} \, \mathsf{E} \, \ell(x^{\natural}; \Omega),$$

and we have

$$\mathsf{E}\,\mathcal{L}(x^{\natural};\Omega_{\mathsf{opt}}) = \min_{\Omega:|\Omega| \leq n} \mathsf{E}\,\mathcal{L}(x^{\natural};\Omega) = 1 - \mathsf{E}\,\frac{\|P_{\Omega_{\mathsf{opt}}}\mathcal{F}x^{\natural}\|_{2}^{2}}{\|x^{\natural}\|_{2}^{2}} =: 1 - \varepsilon_{\mathbb{P}}.$$

### Empirical risk minimization-II

While  $\mathbb{P}$  is unknown, we have i.i.d. samples  $\{x_i\}_{i\leq n}$  from  $\mathbb{P}$ .

Hence we may consider the *empirical risk minimizer* given by:

$$\hat{\Omega} \in \underset{\Omega:|\Omega| < n}{\operatorname{arg \, max}} \frac{1}{m} \sum_{i \le m} \ell(x_i; \Omega).$$

Since in general  $\hat{\Omega} \neq \Omega_{\text{opt}}$ , we can only expect that

$$\mathsf{E}\,\mathcal{L}(x^{\natural};\hat{\Omega}) \leq \mathsf{E}\,\mathcal{L}(x^{\natural};\Omega_{\mathsf{opt}}) + \varepsilon_{m} = 1 - \varepsilon_{\mathbb{P}} + \varepsilon_{m}.$$

# Statistical analysis

Recall that  $\mathsf{E}\,\mathcal{L}(x^{\natural};\hat{\Omega}) \leq \mathsf{E}\,\mathcal{L}(x^{\natural};\Omega_{\mathsf{opt}}) + \varepsilon_{m} = 1 - \varepsilon_{\mathbb{P}} + \varepsilon_{m}$ .

### **Theorem**

For any  $\beta \in (0,1)$ , we have

$$\varepsilon_m \le \sqrt{\frac{2}{m}} \left[ \log \binom{p}{n} + \log \left( \frac{2}{\beta} \right) \right],$$

with probability at least  $1 - \beta$ .

### Corollary

Number of sample signals required is of  $O(n \log p)$ .

# Solving the discrete optimization problem

Define  $\tilde{x}_i = x_i / ||x_i||_2$ . Recall that

$$\hat{\Omega} \in = \underset{\Omega: |\Omega| \leq n}{\operatorname{arg \, max}} \sum_{i \leq m} \frac{\|P_{\Omega} \mathcal{F} x_i\|_2^2}{\|x_i\|_2^2} = \underset{\Omega: |\Omega| \leq n}{\operatorname{arg \, max}} \sum_{i \leq m} \|P_{\Omega} \mathcal{F} \tilde{x}_i\|_2^2.$$

**Proposition** (Existence of a simple greedy algorithm)

Let  $\phi_i$  be the *i*-th row of  $\mathcal{F}$ . We can compute  $\hat{\Omega}$  exactly by the following greedy algorithm.

- 1. For all  $i \leq p$ , compute  $v_i = \sum_{j \leq m} |\langle \phi_i, \tilde{x}_j \rangle|^2$ .
- 2. Let  $\Omega$  be the set of indices of the n largest  $v_i$ 's.
  - If  $\mathcal{F}$  is the Fourier transform, then the computational complexity is  $O(mp\log p)$ , nearly linear time.

# Applications

# Images - I



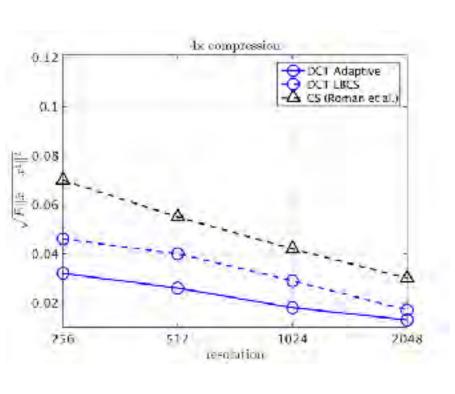


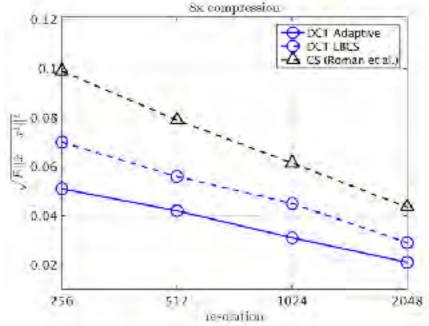


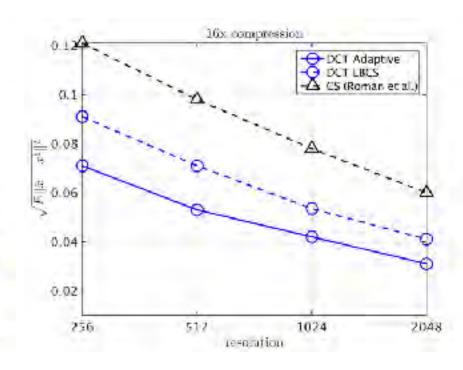




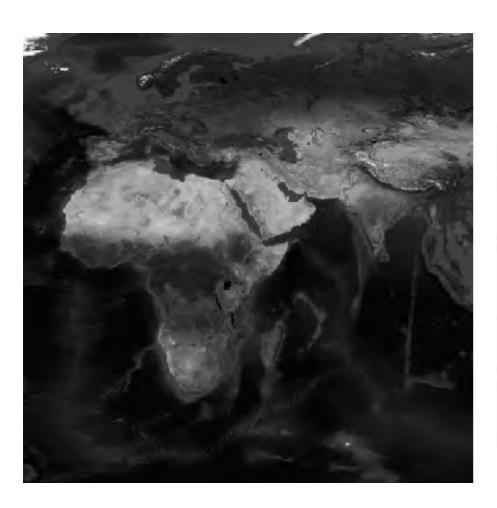
### Old CS vs Learning based CS vs JPEG







# Images - II

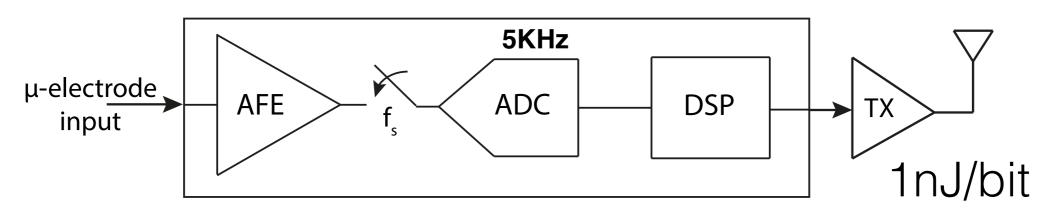


| Resolution | Recovery | Sampling rate |               |               |  |  |
|------------|----------|---------------|---------------|---------------|--|--|
|            |          | 6.25%         | 12.50%        | 25%           |  |  |
|            | BP       | 0.102 / 6s    | 0.083 / 6s    | 0.063 / 6s    |  |  |
| 256        | TV       | 0.102 / 27s   | 0.082/228     | 0.062 / 20s   |  |  |
|            | Adjoint  | 0.103 / 0.01s | 0.084/0.01s   | 0.064/0.01s   |  |  |
| 512        | BP       | 0.080 / 23s   | 0.063 / 22s   | 0.048 / 22s   |  |  |
|            | TV       | 0.080 / 151s  | 0.063 / 162s  | 0.047 / 153s  |  |  |
|            | Adjoint  | 0.081 / 0.03s | 0.064/0.03s   | 0.049 / 0.02s |  |  |
| 1024       | BP       | 0.062 / 85s   | 0.049 / 85s   | 0.036 / 93s   |  |  |
|            | TV       | 0.062 / 340s  | 0.049 / 614s  | 0.036 / 65s   |  |  |
|            | Adjoint  | 0.063 / 0.08s | 0.050 / 0.08s | 0.037 / 0.09s |  |  |
| 2048       | BP       | 0.047 / 381s  | 0.036 / 366s  | 0.026 / 333s  |  |  |
|            | TV       | 0.047 / 1561s | 0.036/2501s   | 0.025 / 2560s |  |  |
|            | Adjoint  | 0.048 / 0.26s | 0.037 / 0.29s | 0.027 / 0.28s |  |  |

1Gpix at 1MPix rate!

Opens up the possibility of streaming video at 30FPS

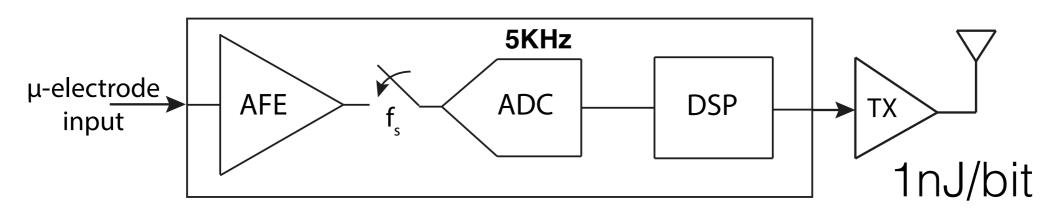
### Wireless neural implants - I



 $\sim .3 \mu W/accumulator$ 

| > 30dB quality | Stream out |  |  |
|----------------|------------|--|--|
| AFE<br>+ ADC   | 10μW       |  |  |
| DSP            | 0          |  |  |
| TX             | 50μW       |  |  |

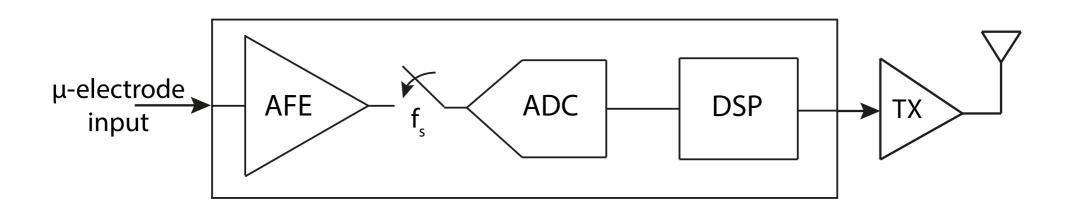
### Wireless neural implants - I



 $\sim .3 \mu W/accumulator$ 

| > 30dB quality | Stream out | Full comp. |
|----------------|------------|------------|
| AFE<br>+ ADC   | 10μW       | 10μW       |
| DSP            | 0          | 80μW       |
| TX             | 50μW       | ~2.5µW     |

### Wireless neural implants - II



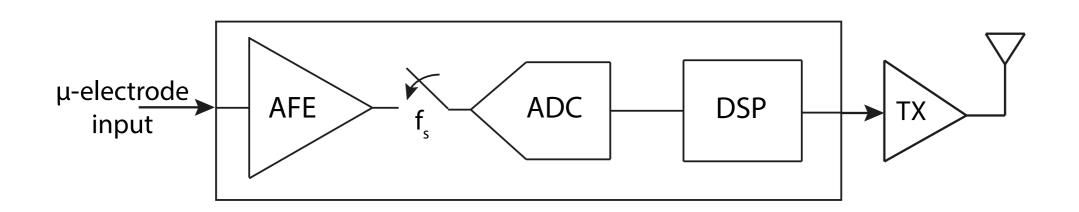
Dataset: billion samples length from iEEG.org

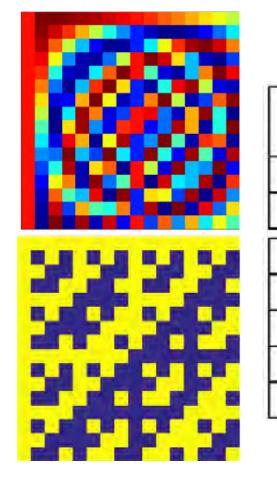
SNR comparison in [dB], for N=256 and  $B_i = 10$ 

|           | Method | Compression rate |       |       |       |       |       |
|-----------|--------|------------------|-------|-------|-------|-------|-------|
|           | Mediod | 2                | 4     | 8     | 16    | 32    | 64    |
|           | LBCS   | 40.79            | 37.64 | 33.27 | 28.48 | 23.27 | 18.06 |
| S         | SHS    | 36.92            | 27.96 | 23.89 | 20.26 | 18.53 | 14.49 |
| o<br>p    | BERN   | 37.48            | 26.69 | 20.49 | 16.87 | 13.53 | 11.15 |
| $\approx$ | MCS    | 28.96            | 24.40 | 20.92 | 17.48 | n.a.  | n.a.  |
|           |        |                  |       |       |       |       |       |

- SHS: Structured Hadamard Sampling [Baldassarre, '15]
- BERN: Random Bernoulli [Chen, JSSC '12]
- MCS: Multi-Channel Sampling [Shoaran, TBioCAS'15]

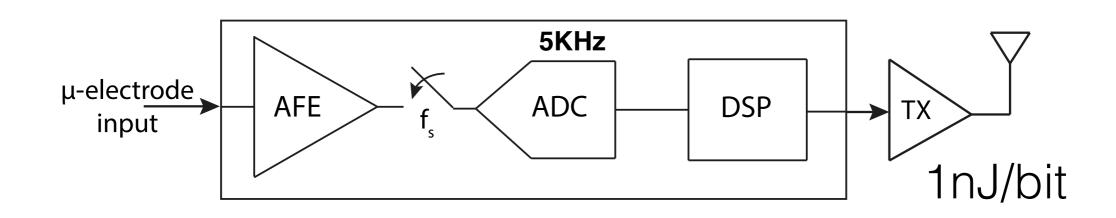
### Wireless neural implants - II





| Method       | Compression rate |       |       |       |       |       |
|--------------|------------------|-------|-------|-------|-------|-------|
| Method       | 2                | 4     | 8     | 16    | 32    | 64    |
| DCT Adaptive | 42.03            | 41.96 | 40.16 | 37.36 | 32.88 | 25.63 |
| DCT LBCS     | 41.65            | 40.66 | 38.59 | 35.55 | 31.00 | 23.97 |
| Had-Adaptive | 41.60            | 39.86 | 36.38 | 31.40 | 25.42 | 19.43 |
| Had-LBCS     | 40.79            | 37.64 | 33.27 | 28.48 | 23.27 | 18.06 |
| SHS HGL      | 36.92            | 27.96 | 23.89 | 20.26 | 18.53 | 14.49 |
| BERN HGL     | 37.48            | 26.69 | 20.49 | 16.87 | 13.53 | 11.15 |
| MCS HGL      | 28.96            | 24.40 | 20.92 | 17.48 | n.a.  | n.a.  |

### Wireless neural implants - II

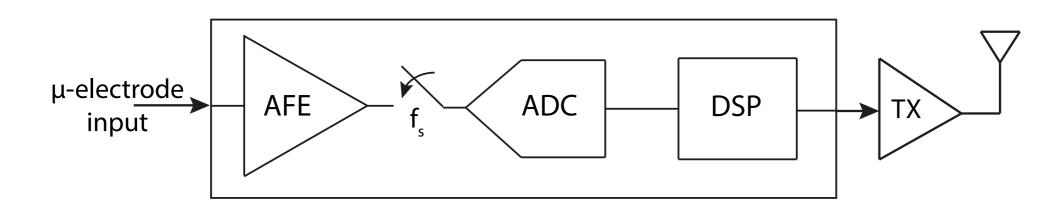


 $\sim .3 \mu W/accumulator$ 

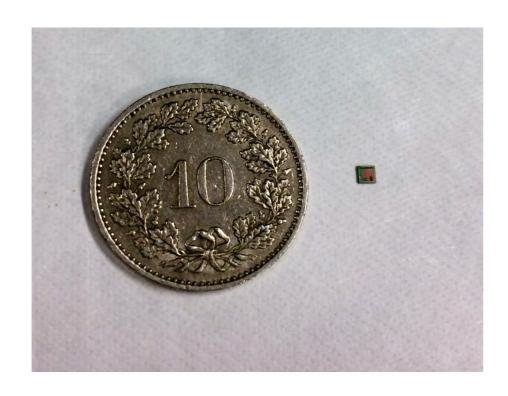
| > 30dB quality | Stream out | Full comp. | LBCS   |
|----------------|------------|------------|--------|
| AFE<br>+ ADC   | 10μW       | 10μW       | 10μW   |
| DSP            | 0          | 80μW       | ~2.5µW |
| TX             | 50μW       | ~2.5µW     | ~3µW   |

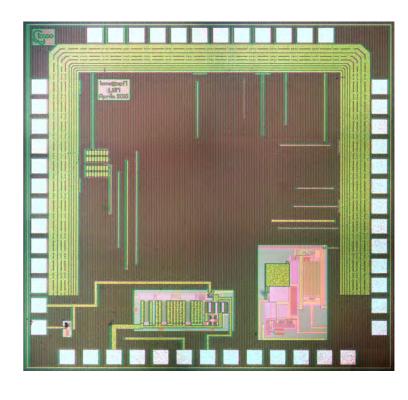
other trade-offs are possible!

### Wireless neural implants - III



#### Actual circuit:





## Magnetic Resonance Imaging



> Hame -> Medical Imaging -> Magnetic Resonance Imaging -> MRI technologies, applications and de-

#### Compressed Sensing

#### Beyond speed.

Overview 1st clinical application

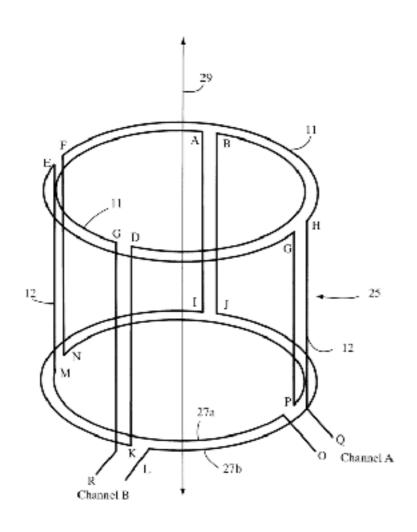
#### Compressed Sensing Cardiac Cine - Beyond speed. Beyond breath-holds.

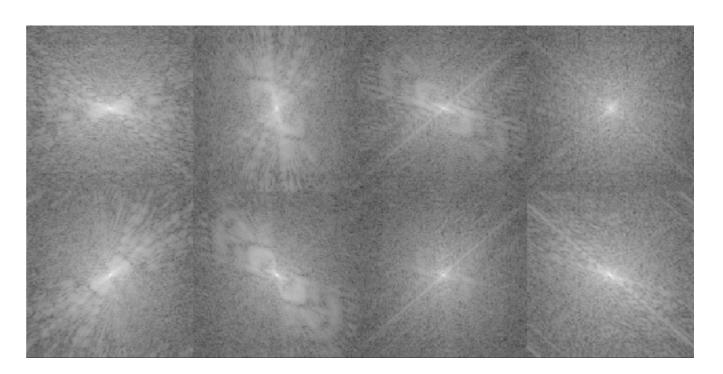


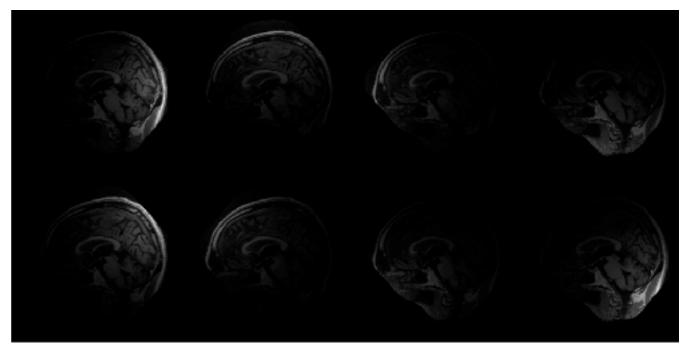
Compressed Sensing Cardiac Cine is the first Compressed Sensing application available. Rather than taking nearly six minutes with multiple breath holds, a Cardiac Cine scan carr now be done within 25 seconds? - in free-breathing.

- Acquire free-preathing, high-resolution Cardiac Cine images
- Capture the whole cardiac cycle for precise quantification
- Expand patient population eligible for cardiac MRI.
- More information about Compressed Sensing Cardiac Cine

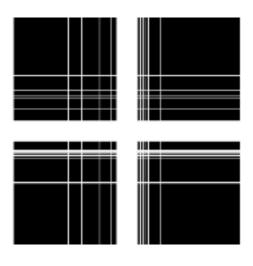
- MRI of the Brain ... 20-45 minute scan time.
- MRI of the Orbits ... 20-35 minute scan time.
- MRI of the TMJ ... 45-60 minute scan time.
- MRI of the Soft Tissue Neck ... 25-35 minute scan time.
- MRI of the Cervical Spine ... 20-35 minute scan time.
- MRI of the Upper Extremity ... 20-45 minute scan time.
- MRI of the Thoracic Spine ... 25-45 minute scan time.
- MRI of the Chest ... 25-45 minute scan time.
- MRI of the Abdomen ... 25-45 minute scan time.

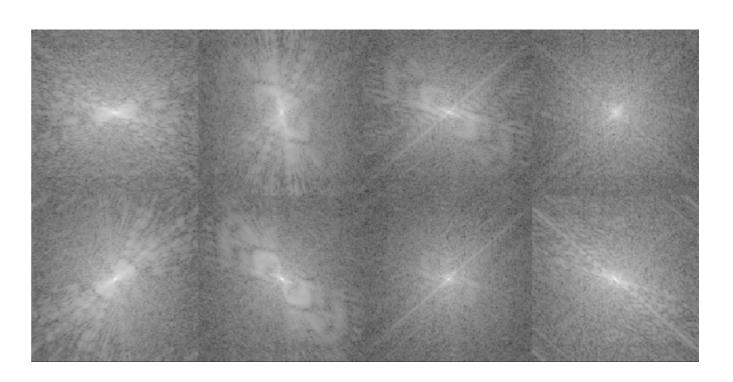


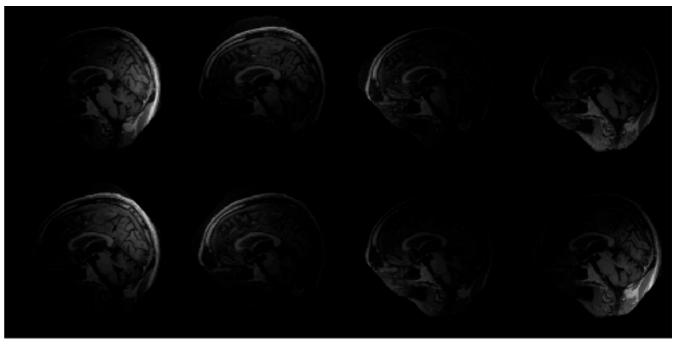




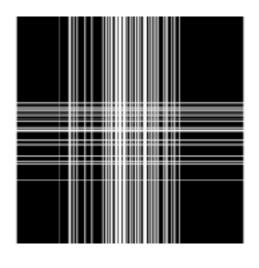
VD

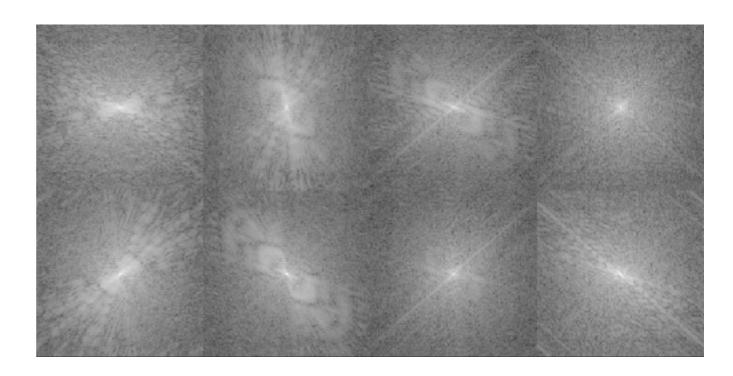




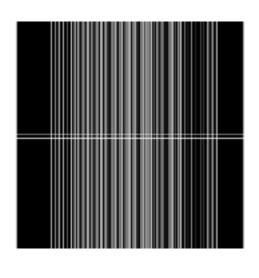


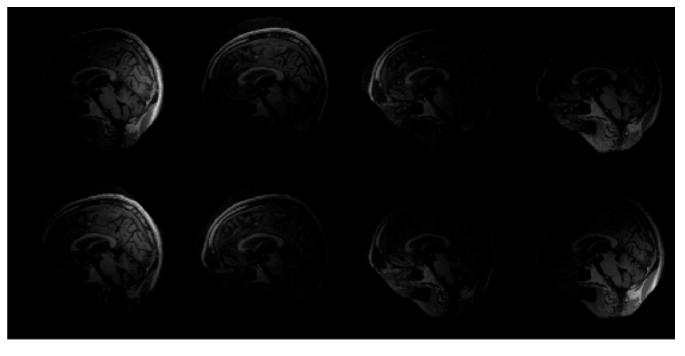
VD





**LBCS** 

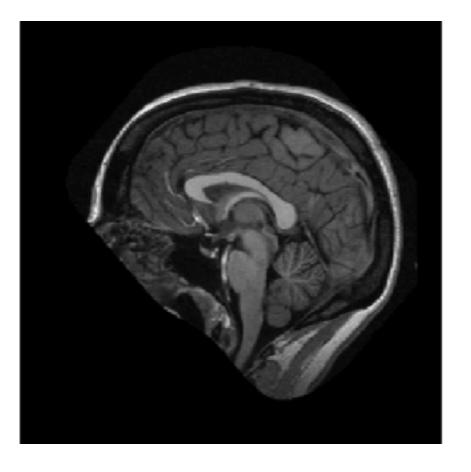


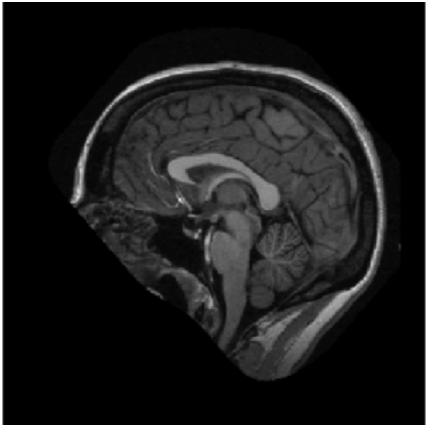


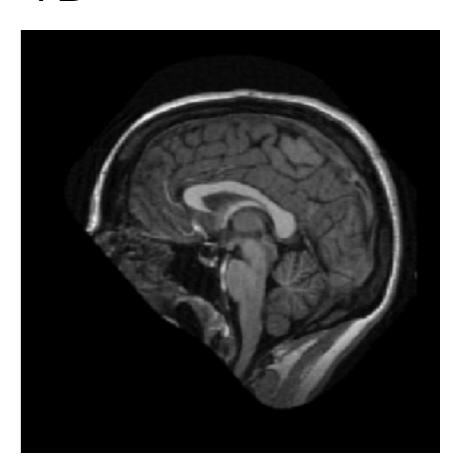
Decoder: BP with shearlets



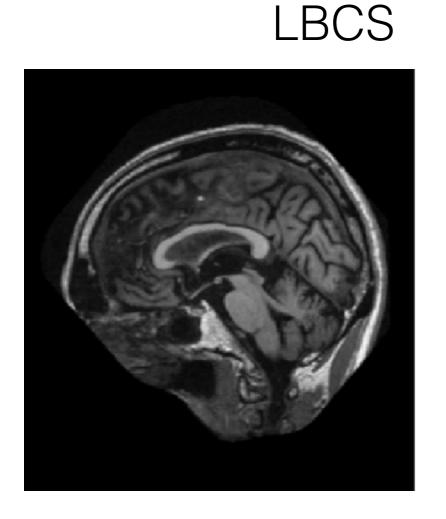
LBCS Patient #22 VD



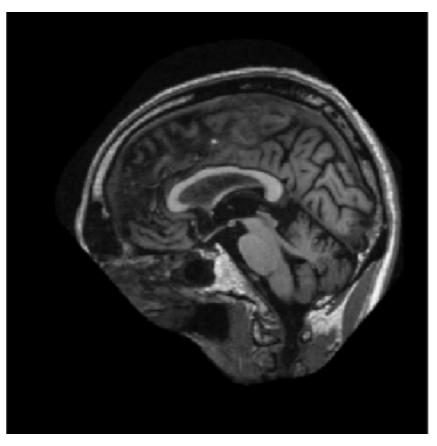




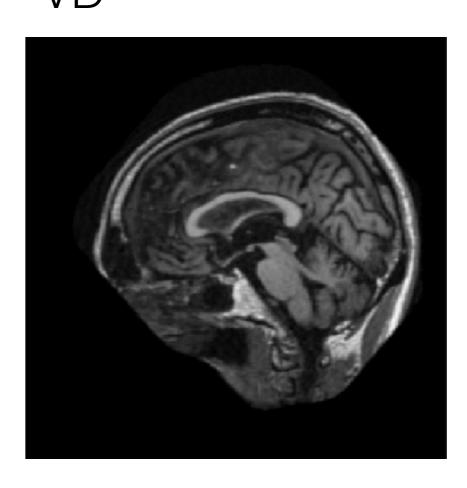
40.80dB 35.08dB



Patient #29



VD



41.39dB

34.80dB



# Learning-based CS

Middle-out compression unleashed with machine learning

http://lions.epfl.ch/publications