Big Data vs. Right Data

Boi Faltings
Applied Machine Learning Days 2017

Machine learning in Al

- Machine learning is a great way to build models for AI systems.
- Al system will influence its environment
- => training data no longer representative.
- => learned knowledge not valid.
- How do we correct for this effect?

Recommender Systems

- Very popular research topic (conference with over 500 participants)
- Widely used in practice.
- Gap between academic research:
 - uses fixed datasets collected without recommendation.
- and actual application:
 - recommendations influence behavior.

News Recommendation

- Keep readers on the site to increase revenue.
- Session-based:
 personalize based on
 browsing behavior.
- Algorithms tuned on user behavior.

Online vs. Offline

- Online behavior: user behavior when exposed to recommendations.
 - Separate online data for each algorithm.
- Offline behavior: user behavior without recommendations.
 - Independent of algorithm: one online data collection allows testing many algorithms.
- Is offline a good proxy for online?

Accuracy Metrics

- Offline: predict what the user will read next.
 - success@k = 1 when next viewed article is in the recommended set of size k.

- Online: observe what the user clicks.
 - Click-through rate (CTR) is the number of clicks on recommended articles over the total number of displayed recommendations.

Recommendation Algorithms

- Recommend the most popular items.
- Recommend random items.
- Recommend preferred items, as learned from user behavior
 - here: context tree (CT)
 - variable-order Markov model continuously adapted to new observations.

Cumulative Offline Accuracy

Cumulative Online CTR

Is random really that good?

- How can random recommendations be as good as the learning algorithm?
- Learning requires data => cannot work on short traces.
- When too little data, approaches most popular (common issue with recommenders).

Random stronger on short visits

Most visits are very short

How could we do better?

- Offline evaluation completely wrong, but online evaluation much too costly for optimizing recommender algorithms.
- Collect data with random recommendations
 => all sequences present in data.
 - => shows reaction for any recommendation.

Random Recommendations

- Solution explored by Li et al. (2011):
 - collect logs with random recommendations
 - given browsing history $p_1...p_k$, find log sequences $p_1...p_k$ and recommend most likely next item x
 - predict CTR for x from CTR in log
- Works for Yahoo home page: only 20 items.
- Doesn't work for news: thousands of items;
 random generation only shows a few of them.

Algorithm Selection and Tuning

Evaluation Metrics

Considered 17 metrics grouped into:

- Accuracy: is recommended item chosen?
- Diversity: dissimilarity of recommendations.
- Coverage: are all items recommended?
- Serendipity: unexpected and useful?
- Novelty: is recommendation long-tail item?

Online experiment to find user model

- Test a few recommendation strategies.
- Measure their success rate, CTR and evaluation metrics.
- Feature selection using least angle regression:
 - Regularizer to minimize number of features.
 - Decrease multiplier of regularizer.
 - Order features by when they enter model.

Building Regression Model

Feature selection (Swissinfo):

Metric Group	First to enter	Avg. entry value (± std. dev.)
Diversity	Personalization	2.53 ± 0.65
Serendipity	Serendipity	2.71 ± 0.58
Accuracy	Markedness	2.82 ± 0.76
Coverage	Shannon Entropy	5.94 ± 0.80
Novelty	Novelty	10.27 ± 2.77

Accuracy is only the third most important predictor!

Online CTR prediction

- Given an algorithm:
 - Measure performance metrics on offline data.
 - Apply regression model to predict CTR.
- Quite accurate:
 - RMSE around 0.5% of actual CTR
 - At least 2x better than accuracy alone.

Example Predictions

Methodology

- Develop broader performance features besides accuracy.
- Train model to predict online accuracy from these features.
- => optimize online performance with offline data.

Conclusions

- Challenge for using machine learning in AI:
 Training data not representative of application
- Cleanest: collect data with random actions.
- Common: incremental deployment, maybe with reinforcement learning.
- Alternative: learn model to map offline performance to online performance.