
TensorFlow for Poets
petewarden@google.com

Want to classify images, but don’t have a
PhD in machine learning?

This talk will show you how!

Don’t worry about trying to write it all down, there’s a full tutorial online at

https://codelabs.developers.google.com/codelabs/tensorflow-for-poets/

https://codelabs.developers.google.com/codelabs/tensorflow-for-poets/
https://codelabs.developers.google.com/codelabs/tensorflow-for-poets/

Don’t believe me?

Swiss trains may run on time, but American ones don’t!

Don’t believe me?

A non-specialist used this to tell when CalTrains were late, using Raspberry Pi’s
to spot when one was passing a particular spot. See
https://svds.com/introduction-to-trainspotting/

Lots more examples, from spotting traffic cops to sorting trash and recycling.

https://svds.com/introduction-to-trainspotting/
https://svds.com/introduction-to-trainspotting/

What do you need?

A laptop (OS X, Windows, or Linux).

A few hundred photos of the thing you want to identify, sorted into folders.

One hour.

Your photos

Start with the prepackaged flowers data set.

Your photos

Start with the prepackaged flowers data set.

Your photos

Several hundred photos of each type of flower, organized into folders by their
species.

You’ll need to do the same with your images.

You can start off with fewer, if that’s all you have.

Set up Docker

This makes it easy to deal with dependencies.

https://docs.docker.com/docker-for-mac/

docker run hello-world

docker run -it gcr.io/tensorflow/tensorflow:latest-devel

Share your photos folder with Docker

ctrl-D if you're still in Docker and then:
cd $HOME
mkdir tf_files
cd tf_files
curl -O http://download.tensorflow.org/example_images/flower_photos.tgz
tar xzf flower_photos.tgz

docker run -it -v $HOME/tf_files:/tf_files gcr.io/tensorflow/tensorflow:latest-devel

Train the model

cd /tensorflow
git pull

python tensorflow/examples/image_retraining/retrain.py \
--bottleneck_dir=/tf_files/bottlenecks \
--model_dir=/tf_files/inception \
--output_graph=/tf_files/retrained_graph.pb \
--output_labels=/tf_files/retrained_labels.txt \
--image_dir /tf_files/flower_photos

Test the model

ctrl-D to exit Docker and then:
curl -L https://goo.gl/tx3dqg > $HOME/tf_files/label_image.py
docker run -it -v $HOME/tf_files:/tf_files gcr.io/tensorflow/tensorflow:latest-devel
python /tf_files/label_image.py /tf_files/flower_photos/daisy/21652746_cc379e0eea_m.jpg

daisy (score = 0.99071)
sunflowers (score = 0.00595)
dandelion (score = 0.00252)
roses (score = 0.00049)
tulips (score = 0.00032)

Now use on your own images

--image_dir is the flag to point to your own images

Model is in ~/tf_files/retrained_graph.pb

You can easily load this into the Android, Python, or Raspberry Pi examples.

Advanced techniques

Not enough data? Try the random crop and sizing examples to augment.

Plenty of time and want more accuracy? Fine tune more than just the top layer:
https://github.com/tensorflow/models/tree/master/inception#how-to-fine-tun
e-a-pre-trained-model-on-a-new-task

Plenty of time, machines, and data? Retrain the whole network from scratch:
https://github.com/tensorflow/models/tree/master/inception#how-to-train-fro
m-scratch-in-a-distributed-setting

https://github.com/tensorflow/models/tree/master/inception#how-to-fine-tune-a-pre-trained-model-on-a-new-task
https://github.com/tensorflow/models/tree/master/inception#how-to-fine-tune-a-pre-trained-model-on-a-new-task
https://github.com/tensorflow/models/tree/master/inception#how-to-fine-tune-a-pre-trained-model-on-a-new-task
https://github.com/tensorflow/models/tree/master/inception#how-to-train-from-scratch-in-a-distributed-setting
https://github.com/tensorflow/models/tree/master/inception#how-to-train-from-scratch-in-a-distributed-setting
https://github.com/tensorflow/models/tree/master/inception#how-to-train-from-scratch-in-a-distributed-setting

How does it work?

Transfer learning.

Lets us take the knowledge gained by training on 1 million Imagenet photos,
and transfer it to categories we care about.

Only a small data set and amount of retraining required.

Common pattern across many deep learning problems.

Great way for non-specialists to benefit from advances in ML.

Questions?

petewarden@google.com

@petewarden

mailto:petewarden@google.com
mailto:petewarden@google.com

