Marloes Maathuis ETH Zurich

Causal questions

 Causal questions are about the mechanism behind the data or about predictions after some outside intervention

Causal questions

- Causal questions are about the mechanism behind the data or about predictions after some outside intervention
- Example questions about the mechanism behind the data:
 - Does smoking cause lung cancer?
 - What are major causes of global warming?
 - What is the gene regulatory network of yeast?

Causal questions

- Causal questions are about the mechanism behind the data or about predictions after some outside intervention
- Example questions about the mechanism behind the data:
 - Does smoking cause lung cancer?
 - What are major causes of global warming?
 - What is the gene regulatory network of yeast?
- Examples for predictions in changed systems:
 - How is the stock market going to react to some new policy interventions?
 - What is the average value of a phenotype after certain gene knock-outs?
 - What are predicted sales after a new advertising campaign?

Randomized controlled experiments

- Causal questions are best answered by randomized controlled experiments:
 - Groups are equal except for the treatment conditions
 any difference in outcome must be caused by the treatment
 - Example: clinical trials to test new drugs

Randomized controlled experiments

- Causal questions are best answered by randomized controlled experiments:
 - Groups are equal except for the treatment conditions
 any difference in outcome must be caused by the treatment
 - Example: clinical trials to test new drugs
- But sometimes such experiments are impossible, as they may be:
 - infeasible (global warming, smoking)
 - unethical (smoking)
 - expensive / time consuming (gene knock-outs)

Research question

 Can we learn causal effects from observational data in high-dimensional systems?

Research question

- Can we learn causal effects from observational data in high-dimensional systems?
- Example: gene regulatory network of yeast:
 - identify pairs of genes between which there is a large effect
 - from observational data
 - gene expression levels of wild-type yeast
 with many more variables than observations
 - > 5000 genes
 - 63 yeast organisms

Research question

- Can we learn causal effects from observational data in high-dimensional systems?
- Example: gene regulatory network of yeast:
 - identify pairs of genes between which there is a large effect
 - from observational data
 - gene expression levels of wild-type yeast
 with many more variables than observations
 - > 5000 genes
 - 63 yeast organisms
- Focus on developing scalable algorithms with proven statistical properties and validations on real data

 It is impossible to estimate causal effects from observational data without making additional assumptions

- It is impossible to estimate causal effects from observational data without making additional assumptions
- Common approach (e.g., Pearl, 2000; Robins et al, 2000):
 - assume that causal relations are known qualitatively and can be represented by a directed acyclic graph (DAG)

- It is impossible to estimate causal effects from observational data without making additional assumptions
- Common approach (e.g., Pearl, 2000; Robins et al, 2000):
 - assume that causal relations are known qualitatively and can be represented by a directed acyclic graph (DAG)

 then the sizes of the causal effects can be estimated from observational data (e.g., covariate adjustment)

- It is impossible to estimate causal effects from observational data without making additional assumptions
- Common approach (e.g., Pearl, 2000; Robins et al, 2000):
 - assume that causal relations are known qualitatively and can be represented by a directed acyclic graph (DAG)

- then the sizes of the causal effects can be estimated from observational data (e.g., covariate adjustment)
- But knowing the graph structure is unrealistic in high-dimensional settings...

Assume the data come from an unknown DAG

- Assume the data come from an unknown DAG
- A DAG encodes conditional independence relationships. Example: $X_1 \to X_2 \to X_3$ implies $X_1 \perp \!\!\! \perp X_3 | X_2$.

- Assume the data come from an unknown DAG
- A DAG encodes conditional independence relationships. Example: $X_1 \to X_2 \to X_3$ implies $X_1 \perp \!\!\! \perp X_3 | X_2$.
- So given all conditional independence relationships in the observational distribution, can we infer the DAG?

 Almost... several DAGs can encode the same conditional independence relationships. They are Markov equivalent.

- Almost... several DAGs can encode the same conditional independence relationships. They are Markov equivalent.
- Example:

	$X_1 \perp \!\!\! \perp X_3$	$X_1 \perp \!\!\! \perp X_3 X_2$
$X_1 \longrightarrow X_2 \longrightarrow X_3$	F	Т
$X_1 \longleftarrow X_2 \longleftarrow X_3$	F	Т
$X_1 \longleftarrow X_2 \longrightarrow X_3$	F	Т
$X_1 \longrightarrow X_2 \longleftarrow X_3$	Т	F

- Almost... several DAGs can encode the same conditional independence relationships. They are Markov equivalent.
- Example:

	$X_1 \perp \!\!\! \perp X_3$	$X_1 \perp \!\!\! \perp X_3 X_2$
$X_1 \longrightarrow X_2 \longrightarrow X_3$	F	Т
$X_1 \longleftarrow X_2 \longleftarrow X_3$	F	Т
$X_1 \longleftarrow X_2 \longrightarrow X_3$	F	Т
$X_1 \longrightarrow X_2 \longleftarrow X_3$	Т	F

 A Markov equivalence class of graphs can be uniquely represented by a CPDAG. These can be learned by, e.g., the PC algorithm (Spirtes et al, 2000)

IDA algorithm: oracle version

The true causal effect is in Θ .

We can obtain bounds on the size of the causal effect.

IDA algorithm: local oracle version

Bounds based on Θ^L are identical to bounds based on Θ . Proof uses graph theoretic properties of the CPDAG.

IDA algorithm: local sample version

The estimates are consistent in certain sparse high-dimensional settings

Validation: overview

Target set: top 10% of effects from experimental data

Source: Nature Methods, 2010

Target set: top 10% of effects from experimental data

Consider top q = 1000 effects

TP FP Random guessing 100 900

Source: Nature Methods, 2010

Target set: top 10% of effects from experimental data

Consider top q = 1000 effects

TP FP Random guessing 100 900 Lasso / E-net 130 870

Source: Nature Methods, 2010

Target set: top 10% of effects from experimental data

Consider top q = 1000 effects

	IF	IF
Random guessing	100	900
Lasso / E-net	130	870
IDA	425	575

Source: Nature Methods, 2010

Target set: top 10% of effects from experimental data

Consider top q = 1000 effects

	11	
Random guessing	100	900
Lasso / E-net	130	870
IDA	425	575

Possible use: design of experiments

Source: Nature Methods, 2010

FD

R-package pcalg

(Kalisch et al 2012, J. Stat. Softw.)

- R-package pcalg
 (Kalisch et al 2012, J. Stat. Softw.)
- Improved performance in combination with sub-sampling (Stekhoven et al 2012, Bioinformatics)

- R-package pcalg
 (Kalisch et al 2012, J. Stat. Softw.)
- Improved performance in combination with sub-sampling (Stekhoven et al 2012, Bioinformatics)
- Resolving order-dependence in the PC algorithm (Colombo & Maathuis 2014, JMLR)

- R-package pcalg
 (Kalisch et al 2012, J. Stat. Softw.)
- Improved performance in combination with sub-sampling (Stekhoven et al 2012, Bioinformatics)
- Resolving order-dependence in the PC algorithm (Colombo & Maathuis 2014, JMLR)
- Improved performance with other causal structure learning methods (Nandy et al, arXiv:1507.02608)

- R-package pcalg
 (Kalisch et al 2012, J. Stat. Softw.)
- Improved performance in combination with sub-sampling (Stekhoven et al 2012, Bioinformatics)
- Resolving order-dependence in the PC algorithm (Colombo & Maathuis 2014, JMLR)
- Improved performance with other causal structure learning methods (Nandy et al, arXiv:1507.02608)
- joint-IDA: allowing for multiple simultaneous interventions (Nandy et al 2017, Ann. Statist.)

- R-package pcalg
 (Kalisch et al 2012, J. Stat. Softw.)
- Improved performance in combination with sub-sampling (Stekhoven et al 2012, Bioinformatics)
- Resolving order-dependence in the PC algorithm (Colombo & Maathuis 2014, JMLR)
- Improved performance with other causal structure learning methods (Nandy et al, arXiv:1507.02608)
- joint-IDA: allowing for multiple simultaneous interventions (Nandy et al 2017, Ann. Statist.)
- LV-IDA: allowing for latent variables (Malinsky & Spirtes 2016, PGM)

- R-package pcalg
 (Kalisch et al 2012, J. Stat. Softw.)
- Improved performance in combination with sub-sampling (Stekhoven et al 2012, Bioinformatics)
- Resolving order-dependence in the PC algorithm (Colombo & Maathuis 2014, JMLR)
- Improved performance with other causal structure learning methods (Nandy et al, arXiv:1507.02608)
- joint-IDA: allowing for multiple simultaneous interventions (Nandy et al 2017, Ann. Statist.)
- LV-IDA: allowing for latent variables (Malinsky & Spirtes 2016, PGM)
- Complete graphical criteria for covariate adjustment (Perković et al 2015, UAI; Perković et al 2016, JMLR)

Summary

• There is a need for causal methods for observational data

Summary

- There is a need for causal methods for observational data
- Such methods cannot replace randomized controlled experiments.
 But they can be very valuable as exploratory method:
 - hypothesis generation
 - prioritization of experiments

Summary

- There is a need for causal methods for observational data
- Such methods cannot replace randomized controlled experiments.
 But they can be very valuable as exploratory method:
 - hypothesis generation
 - prioritization of experiments
- IDA estimates bounds on causal effects from observational data, assuming the data come from an unknown DAG:
 - computationally feasible for large sparse systems
 - statistical properties (consistency)
 - validations in biological systems
 - various extensions available

Thank you! maathuis@stat.math.ethz.ch